BCX4161, an Oral Kallikrein Inhibitor, is Effective and Safe in the Prophylaxis of Acute Attacks in Patients with Hereditary Angioedema:

Results of the Phase 2 Trial OPuS-1

Marcus Maurer
Allergie-Centrum-Charité
Department of Dermatology and Allergy
Charité - Universitätsmedizin Berlin
Disclosure of Significant Relationships with Commercial Companies and Organizations

Funding of Research by Almirall, Bayer Bioscience, Biobasal AG, Biocryst, Biofrontera, BMWi (ProInno), Carstens Stiftung, DBV Winterthur, Deutsche Forschungsgemeinschaft (DFG), Deutsche Krebshilfe, Eppenauer Gutzeit Stiftung, Essex Pharma, EU (Europäischer Fond für Regionale Entwicklung, EFRE), EU (FP7, COST), European Centre of Allergy Research Foundation (ECARF), FAES Pharma, GA2LEN, GSK Japan, Hans Sauer Stiftung, Investitionsbank Berlin (PROfit), Italfarmaco, Jado Labs, Jerini, Jürgen Manchot Stiftung, Jung Stiftung für Wissenschaft und Forschung, L. van Heek Textiles, Maruho, Novartis, Pharmacia Diagnostics, Schering-Plough, Shire, Stiftung Rheinland Pfalz für Innovation, Symbiopharm, UCB, Unna-Stiftung, Urticaria Network e.V. (UNEV), Viropharma, and Volkswagen Stiftung.

Speaker and/or Advisor for Almirall Hermal, Bayer Schering Pharma, Biocryst, Biofrontera, Essex Pharma, Genentech, JADO Technologies, Jerini, Merckle Recordati, Moxie, Novartis, Sanofi Aventis, Schering-Plough, Leo, Merck, MSD, Moxie, Shire, Symbiopharm, UCB, Uriach, and Viropharma.
HAE is a rare disease with significant mortality

- Caused by a deficiency of the C1 inhibitor (C1 INH), a regulator of several inflammatory pathways
 - Type I: Synthesis reduced (80%-85%)
 - Type II: Functional impairment (~15%-20%)

- ~6,200 patients U.S. and ~10,000 in EU based on estimated prevalence of 1 in 50,000

- Women appear to have a more severe and frequent disease course

- Patients average 1 to 3 attacks/month with most episodes lasting 1-5 days that resolve spontaneously

- Most common swellings are asymmetric, cutaneous and affecting the hands, feet, face, genitals and GI tract

- 50% of patients have laryngeal swellings that are potentially fatal

- Mortality has been reported in up to 30% of patients with previously undiagnosed HAE

Role of Plasma Kallikrein in HAE

Factor XIIa, Plasmin

Prekallikrein

Kallikrein

High-Molecular-Weight Kininogen

Bradykinin

BK receptor

Vasodilatation, nonvascular smooth muscle contraction & edema
BCX4161

- BCX4161 is a potent, small-molecule inhibitor of human plasma kallikrein
 - K_i of 0.26 nM on isolated enzyme
 - Inhibition of kallikrein in plasma from 51 normal subjects:
 Median EC_{50} is 6 nM
 - Inhibition of kallikrein in plasma from 10 HAE subjects during the intercritical period:
 Mean EC_{50} is 14 nM
- Orally available
- Safety, pharmacokinetics, and kallikrein inhibition data from first-in-human study supported further clinical development\(^1,2\)

\(^1\)Collis et al., AAAAI 2014, Poster #138, \(^2\)Babu et al., AAAAI 2014, Poster #143
OPuS-1: Oral Prophylaxis for Hereditary Angioedema

A Phase 2a, Double-Blind, Placebo-Controlled 2-Period Crossover Study To Evaluate the Safety and Efficacy of BCX4161 as a Prophylactic Treatment to Reduce the Frequency of Attacks in Subjects with Hereditary Angioedema
OPuS-1: Proof-of-Concept Prophylaxis Study in HAE

- Targeted 25 HAE Type I and II patients in Germany and UK
- Frequent HAE attacks (~1/ week) required for entry
- Subject-reported attacks were adjudicated by an independent, blinded panel of HAE-treating physicians
- Acute attacks were treated in accordance with the subject’s normal standard of care
- Primary efficacy endpoint:
 - Mean acute attack rate during each treatment period
- Key secondary endpoints:
 - Attack severity (AAS28)
 - Quality of life (AE-QoL)
 - Safety and tolerability
OPuS-1: Patient population & HAE characteristics

Demographics
- 24 subjects received study drug and completed study
- 15 women and 9 men
- 23 subjects with HAE Type I
- Mean age 42.4 years (SD 11.4)
- Mean BMI 28.7 kg/m² (SD 5.1)

Disease parameters
- Mean duration of illness from first symptoms of 31.8 yrs
- 83% have had ≥ 1 laryngeal attack
- 54% had ≥ 1 laryngeal attack in the past year
- 29% underwent laparotomy
- Mean of 1.2 ER visits in the last year required for HAE attacks

HAE treatment experience
- On-demand Rx self-administered by 83% of subjects
- 46% had tried androgens but discontinued for intolerability, AEs, lack of efficacy or difficulty in use
- On-demand Rx of HAE attack used within a median of 1h of attack onset
 - 37.5% still have symptoms ≥ 1 day after treating a usual attack
OPuS-1: Overall Attack Summary

Placebo Period
- n = 138 attacks reported
- n = 123 attacks adjudicated
 - Mean attack duration 23.3 h (SD 14)
- n = 116 attacks treated
 - 108 treated with C1 INH
 - 12 treated with icatibant

BCX4161 Period
- n = 89 attacks reported
- n = 79 attacks adjudicated
 - Mean attack duration 20.0 h (SD 13)
- n = 72 attacks treated
 - 68 treated with C1 INH
 - 9 treated with icatibant
OPuS-1: Primary efficacy endpoint outcome

<table>
<thead>
<tr>
<th>Adjudicated attacks</th>
<th>BCX4161 period n=24</th>
<th>Placebo period n=24</th>
<th>Difference (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least Squares Mean</td>
<td>0.82</td>
<td>1.27</td>
<td>-0.45 (-0.67, -0.23)</td>
<td><0.001</td>
</tr>
<tr>
<td>Attack rate per week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Analysis was performed using a mixed effect model including sequence, period and treatment as fixed effects, and subjects within sequence as a random effect. Sequence and period were not significant.

Baseline characteristics including sex, age, weight, BMI, screening attack rate and on-demand HAE medication use were not predictors of response to BCX4161.
OPuS-1: Subject-Reported Weekly Attack Rates

Weekly attack rate mean (SD), all subjects:

<table>
<thead>
<tr>
<th></th>
<th>Historical</th>
<th>Screening</th>
<th>Treatment Period</th>
<th>Washout</th>
<th>Treatment Period</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.50 (0.6)</td>
<td>1.91 (1.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Historical HAE Attack Rate

- Screening Window
- 28 Day Dosing Period 1
- 28 Day Dosing Period 2
- 7 Day Washout
- 7 Day Follow-Up

Sequence 1
- BCX4161
- 0.91 (0.7)

Sequence 2
- Placebo
- 1.48 (0.7)

Weekly attack rate mean (SD), n = 12/sequence:

<table>
<thead>
<tr>
<th></th>
<th>Sequence 1</th>
<th>Washout Period</th>
<th>Sequence 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCX4161</td>
<td>0.91 (0.7)</td>
<td></td>
<td>Placebo</td>
</tr>
<tr>
<td>Placebo</td>
<td>1.48 (0.7)</td>
<td>Washout Period</td>
<td>BCX4161</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.38 (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.94 (0.7)</td>
</tr>
</tbody>
</table>
OPuS-1: Primary endpoint sensitivity analysis & key secondary analyses

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>BCX4161 period</th>
<th>Placebo period</th>
<th>By-subject Difference</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least Squares Mean attack rate per week, All subject-reported attacks*</td>
<td>0.92</td>
<td>1.43</td>
<td>-0.50</td>
<td>0.002</td>
</tr>
<tr>
<td>(Sensitivity analysis of primary endpoint)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean change from baseline in Angioedema Quality of Life score, weighted total†</td>
<td>-8.4</td>
<td>-0.5</td>
<td>-7.9</td>
<td>0.004</td>
</tr>
<tr>
<td>Disease activity, mean Angioedema Activity Score (AAS28)</td>
<td>21.4</td>
<td>28.8</td>
<td>-7.35</td>
<td>0.022</td>
</tr>
</tbody>
</table>

* Analysis was performed using a mixed effect model including sequence, period and treatment as fixed effects, subjects within sequence as a random effect.
† Negative numbers represent improvement in AeQoL
OPuS-1: Overall adverse event summary

<table>
<thead>
<tr>
<th></th>
<th>BCX4161 (N=24)</th>
<th>Placebo (N=24)</th>
<th>Total (N=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects with any AE, n (%)</td>
<td>17 (71%)</td>
<td>20 (83%)</td>
<td>24 (100%)</td>
</tr>
<tr>
<td>Subjects with any Drug-Related AE, n (%)</td>
<td>12 (50%)</td>
<td>10 (42%)</td>
<td>17 (71%)</td>
</tr>
<tr>
<td>Subjects with AE Leading to Study Discontinuation, n (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subjects with any Serious AE, n (%)</td>
<td>0</td>
<td>1 (4.2)</td>
<td>1 (4.2)</td>
</tr>
<tr>
<td>Subjects with any AE of Grade 3 or Grade 4, n (%)</td>
<td>3 (13%)</td>
<td>3 (13%)</td>
<td>5 (21%)</td>
</tr>
<tr>
<td>Subjects with Drug-Related AE of Grade 3 or 4, n (%)</td>
<td>1*(4%)</td>
<td>0</td>
<td>1 (4%)</td>
</tr>
</tbody>
</table>

- AEs were balanced between BCX4161 and placebo periods
- 1 Serious Adverse Event - HAE abdominal attack (placebo)
- Grade 3 events on BCX4161 were nasopharyngitis (2), thirst, and pruritus*; grade 3 events on placebo were musculo-skeletal pain, neck pain, headache and HAE attack
- No grade 4 events
OPU-S-1: Treatment-emergent adverse events occurring in ≥ 3 subjects

<table>
<thead>
<tr>
<th>MedDRA System Organ Class / Preferred Term</th>
<th>BCX4161 (N=24)</th>
<th>Placebo (N=24)</th>
<th>Total (N=24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects with at least one TEAE, n (%)</td>
<td>17 (71%)</td>
<td>20 (83%)</td>
<td>24 (100%)</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>3 (13%)</td>
<td>0</td>
<td>3 (13%)</td>
</tr>
<tr>
<td>Splenomegaly*</td>
<td>3 (13%)</td>
<td>0</td>
<td>3 (13%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>9 (38%)</td>
<td>10 (42%)</td>
<td>18 (75%)</td>
</tr>
<tr>
<td>Flatulence</td>
<td>4 (17%)</td>
<td>6 (25%)</td>
<td>10 (42%)</td>
</tr>
<tr>
<td>Diarrhea‡</td>
<td>3 (13%)</td>
<td>5 (21%)</td>
<td>8 (33%)</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>2 (8%)</td>
<td>1 (4%)</td>
<td>3 (13%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>0</td>
<td>3 (13%)</td>
<td>3 (13%)</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>7 (29%)</td>
<td>8 (33%)</td>
<td>14 (58%)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>4 (17%)</td>
<td>7 (29%)</td>
<td>10 (42%)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>6 (25%)</td>
<td>4 (17%)</td>
<td>9 (38%)</td>
</tr>
<tr>
<td>Headache</td>
<td>4 (17%)</td>
<td>4 (17%)</td>
<td>7 (29%)</td>
</tr>
</tbody>
</table>

* In 2 subjects, spleen size was found to be normal on ultrasound. The third subject was 197 cm tall. There were no lab abnormalities and enlarged spleen persisted through 3 months post-study follow-up without symptoms. Splenic length correlates to height\(^1\). The large spleen in this subject is likely an incidental finding.

‡ No increase in frequency of defecation – represents soft or pasty stools, generally grade 1.

OPuS-1: Conclusions

• All study objectives were met
• All 24 subjects completed the trial
• Mean study drug dosing compliance was 98%
• Attack rates on BCX4161 were significantly lower than on placebo ($p<0.001$)
• Quality of life was significantly improved ($p=0.004$)
• The safety and tolerability profile of BCX4161 was similar to placebo
• The efficacy and safety profile from OPuS-1 supports continued development of BCX4161
Acknowledgements

• OPuS-1 Investigators

 Emel Aygören-Pürsün
 Markus Magerl
 Inmaculada Martinez-Saguer
 Hilary Longhurst
 Murat Bas

• Clinical trial staff at each participating OPuS-1 center

• HAE patients who graciously participated in OPuS-1
Backup Slides
OPuS-1: PK, PK-PD and PK-efficacy relationships

- Drug exposure was generally similar to that seen in healthy subjects in the phase 1 study.
- Plasma kallikrein inhibition was correlated with plasma drug level, $r = 0.73$.
- Higher drug exposure was associated with a better clinical outcome.
Correlation Analysis: Attack Rate and Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Adjudicated attack rate difference</th>
<th>Screening attack rate</th>
<th>Weight</th>
<th>BMI</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjudicated attack rate difference</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening attack rate</td>
<td>-0.35 (p = 0.10)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>0.11 (p = 0.61)</td>
<td>0.15 (p = 0.49)</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>0.29 (p = 0.17)</td>
<td>-0.16 (p = 0.45)</td>
<td>0.83 (p < 0.001)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.33 (p = 0.11)</td>
<td>-0.09 (p = 0.69)</td>
<td>-0.01 0.95</td>
<td>0.17 (p = 0.42)</td>
<td></td>
</tr>
</tbody>
</table>

Data are Pearson Correlation Coefficients and associated p values, n = 24
Influence of Covariables on Attack Rate

<table>
<thead>
<tr>
<th></th>
<th>R-Square (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening Attack Medication (C1 INH, Icatibant or Icatibant + C1 INH)</td>
<td>7.4% (0.43)</td>
</tr>
<tr>
<td>Sex</td>
<td>13.4% (0.08)</td>
</tr>
</tbody>
</table>

Calculated from generalized linear model of attack rate with gender and screening attack medication as explanatory variables for the dependent variable, attack rate.