BCX4430, an Adenosine Analog, with Potent Activity Against Yellow Fever Virus in a Hamster Model

Justin G. Julandera, Shanta Bantiab, Brian R. Taubenheimb, Dena M. Minningc, Pravin Kotianb, John D. Morreya, William P. Sheridanb, and Yarlagadda S. Babub

aInstitute for Antiviral Research, Utah State University, Logan, UT.
bBioCryst Pharmaceuticals, Inc. Durham, NC.
cMedExpert Consulting, Inc., Indialantic, FL.

Supported in part by NIAID Contract HHSN272201000039I/HHSN272000004, Task A21
Epidemiology of Yellow Fever

• Endemic to Africa and South America
• Cause periodic outbreaks with 20-50% mortality
• Imported cases and vaccine-associated adverse effects in areas outside natural range
• No approved antiviral therapy
BCX4430 Characteristics

- Novel adenosine analog
- Efficiently phosphorylated to triphosphate form in cells
- Does not incorporate into mammalian RNA or DNA
- Metabolically stable – not deaminated

<table>
<thead>
<tr>
<th>Study</th>
<th>Concentration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMES</td>
<td>5 mg/plate</td>
<td>Negative</td>
</tr>
<tr>
<td>hERG</td>
<td>30 µM</td>
<td>Negative</td>
</tr>
<tr>
<td>Mammalian DNA incorporation</td>
<td>30 µM</td>
<td>Negative</td>
</tr>
<tr>
<td>Mammalian RNA incorporation</td>
<td>30 µM</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Broad-Spectrum Activity of BCX4430

<table>
<thead>
<tr>
<th>Family</th>
<th>Virus</th>
<th>EC$_{50}$(µg/mL)</th>
<th>EC$_{90}$(µg/mL)</th>
<th>In Vivo PoP</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaviviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow Fever</td>
<td>8.3</td>
<td>9.33</td>
<td>Yes</td>
<td>Hamster</td>
</tr>
<tr>
<td></td>
<td>Dengue 2</td>
<td>13</td>
<td>13.05</td>
<td>Yes</td>
<td>Mouse</td>
</tr>
<tr>
<td></td>
<td>West Nile</td>
<td>16</td>
<td>7</td>
<td>Yes</td>
<td>Hamster</td>
</tr>
<tr>
<td></td>
<td>JEV (SA-14)</td>
<td>6.5</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>Bunyaviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rift Valley Fever</td>
<td>54</td>
<td>37</td>
<td>Yes</td>
<td>Mouse</td>
</tr>
<tr>
<td></td>
<td>Maporal (Hantavirus) (HV97021050)</td>
<td>7.8</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>Rhabdoviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rabies (Flury LEP)</td>
<td>9.8</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>Coronaviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SARS-CoV</td>
<td>16</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>Togaviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VEE (TC83)</td>
<td>72</td>
<td>60</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>EEE (FL93-939)</td>
<td>13</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>Paramyxoviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measles</td>
<td>1.4</td>
<td>0.37</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Parainfluenza 3</td>
<td>10</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td></td>
<td>RSV</td>
<td>13</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>Picornaviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhinovirus 2</td>
<td>5.7</td>
<td>19</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>Adenoviridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adenovirus</td>
<td>60</td>
<td>25</td>
<td>n/d</td>
<td>n/d</td>
</tr>
</tbody>
</table>

n/d: not determine
BCX4430 is Active Against YFV

- Broad-spectrum activity against several families, with specific pan-flavivirus activity
- Effective against YFV (17D) in Vero cells:
 \[
 \text{EC50: 8.3 } \mu\text{g/ml; EC90: 9.3 } \mu\text{g/ml; CC50: 320 } \mu\text{g/ml}
 \]
- Potential RNA polymerase inhibitor- results pending
- *In vivo* testing warranted
Hamster Model of Yellow Fever

• Adapted Jimenez strain, i.p.
• Serum AST > ALT
• 80% mortality around 6-9 dpi
• Renal dysfunction
• Several measurable blood parameters of disease

• Liver disease w/ microvesicular steatosis
• Viremia, 2-5 d

• Some hemorrhagic manifestations: petechiae, nosebleed

• Liver disease w/ microvesicular steatosis
• Adapted Jimenez strain, i.p.
Tolerated dose

- Golden Syrian hamsters, Charles River Labs
- Uninfected animals, 3/group
- BCX4430 doses from 150-300 mg/kg/d tested
- Weights and survival monitored
Tolerated Dose in Uninfected Hamsters

![Graph showing mean weight change over days post-treatment initiation for different dose groups of BCX-4430 and placebo treatment.]

- BCX-4430 150 mg/kg/d
- BCX-4430 200 mg/kg/d
- BCX-4430 250 mg/kg/d
- BCX-4430 300 mg/kg/d
- Placebo treatment

*P<0.05, **P<0.01 as compared with tox placebo treatment
10 hamsters/group infected, 5/group tox

Test doses of 1.25, 4.0, 12.5, 40 and 125 mg/kg/d

Administered i.p., bid X 7 days beginning -4 h

Disease parameters: survival, Δ weight, serum ALT (day 6), viremia (d 4)
BCX-4430 Protected Animals at Doses Ranging from 4 to 125 mg/kg

Percent survival

Day of death

- BCX-4430, 125 mg/kg
- BCX-4430, 40 mg/kg
- BCX-4430, 12.5 mg/kg
- BCX-4430, 4 mg/kg
- BCX-4430, 1.25 mg/kg
- Ribavirin, 50 mg/kg
- Saline Placebo

***P<0.001, **P<0.01, *P<0.05, as compared with placebo..."
BCX-4430 Treatment Improves Weight Change

***P<0.001, **P<0.01, as compared with placebo
BCX-4430 Treatment Significantly Reduces Serum ALT and Viremia

***P<0.001, **P<0.01, as compared with placebo treatment
Dose Response- Key Findings

- Maximum tolerated dose 200 mg/kg/d administered i.p., bid for 7 days
- Minimum effective dose 4 mg/kg/d
- 12.5 mg/kg/d required for significant improvement of all disease parameters
- Broad therapeutic index ~50 with i.p. administration
Post-Virus Treatment Initiation

- BCX-4430 200 mg/kg/d, bid X 7
- Treatment initiated daily (0-6 dpi) 2 separate studies
- Disease parameters include survival, Δ weight, ALT (day 6), and viremia (day 4)
BCX-4430 Protected Animals When Initiated up to 4 Days Post-Infection

Data combined from 2 studies
Treatment Ameliorated Weight Loss When Delayed 3 or 4 Days Post-Infection

Data combined from 2 studies, weight change between 3 and 6 dpi
***P<0.001, *P<0.05, as compared with placebo
Effect of Therapeutic BCX-4430 Treatment on Serum ALT and Viremia

Data combined from 2 studies
Therapeutic Efficacy - Key Findings

- BCX4430 treatment significantly improved survival and weight change when administered up to 4 days after virus challenge, despite minimal effect on ALT and serum virus titer.

- Treatment beginning on 4 dpi coincides with peak viremia and liver titers.

- Two separate studies confirmed the efficacy of treatment initiated 3 and 4 dpi.
Virus Rechallenge Study

- 2° challenge of animals from therapeutic study compared with challenge of naïve indv.

- Disease parameters: survival, Δ weight, ALT (day 6), viremia (day 4), and nAb titer (day 0)
Significantly Improved Survival in Rechallenged Versus Naïve Animals

***P<0.001, **P<0.01, as compared with infection of naive hamsters
Weight Increases After Rechallenge vs. Naïve Animals
Serum ALT and AST were Significantly Improved after Rechallenge

***P<0.001, **P<0.01, *P<0.05, as compared with placebo
Significantly Lower Virus Titers Correlate with Higher nAb Levels

***P<0.001, **P<0.01, as compared with placebo
Key Findings

- BCX4430 treatment up to 24 h after infection results in efficient clearance of YFV

- Animals treated beginning 2 dpi or later demonstrated complete immune response and protection against other disease parameters

- Earlier treatment initiation (<2 dpi) resulted in a less effective protection to secondary virus challenge
Reduced Treatment Freq./Duration

- 12 mg/kg/d of BCX4430 in 0.2 ml; Ribavirin control, 50 mg/kg/d
- Twice daily (bid) vs once daily (qd) treatment
- Treatment duration of 4 or 7 days, initiated -4 h
- Treatment duration of 5 days, initiated 2 dpi
- Disease parameters: Survival, weight change, serum ALT (6 dpi) and serum virus titer (4 dpi).
Shorter, Less Frequent Dosing was Still Protective, Even Therapeutically

P<0.01, *P<0.05, as compared with placebo
Altered Treatment Regimen Significantly Improves Weights

***P<0.001, **P<0.01, *P<0.05, vs placebo
Less Frequent, Shorter Treatment Regimen Improves ALT, Virus

***P<0.001, **P<0.01, as compared with placebo
Key Findings

- **QD** treatment is not significantly different than **BID** treatment

- A 4 day treatment regimen appears to be as effective as a 7 day regimen

- BCX-4430 (12 mg/kg) compared favorably with the positive control Ribavirin (50 mg/kg)

- A 5 day treatment initiated on 2 dpi was effective and resulted in significantly reduced mortality, regardless of treatment frequency
Summary of Findings- BCX-4430

- Tolerable in hamsters up to 200 mg/kg/day, i.p. for 7 days
- Anti-YFV activity at doses as low as 4 mg/kg/d
 - Tolerability index of ~50
- Improves survival from 10-30% in controls to 70-100%
- Reduces/prevents viremia and hepatic viral proliferation
Summary of Findings- BCX-4430

- Reduces/prevents transaminitis
- Demonstrates dose-response relationship
- Effective when administered bid X 7 days at a dose of 200 mg/kg/d when initiated up to 4 dpi
 - Coincides with onset of disease signs
- Permits induction of protective immunity
Acknowledgements

- Institute for Antiviral Research: Isaac Wong, Choi Jung, Joe Hagloch, Shelby Wilcox, and Makda Gebre
- BioCryst: Debra Kellogg, YeHong Luo, Cynthia Parker, Ramanda Upshaw, Pooran Chand, and Pravin Kotian
- NIH Project Officer: Heather Greenstone
- NIH Contract: HHSN272201000039I/A21, Division of Microbiology and Infectious Disease, NIAID, NIH
Characterizing the Activity of BCX4430

- Dose range finding study
- Post-virus challenge activity
- Rechallenge after treatment
- Frequency of dosing
- Treatment duration
Dose Response- Study 1

- 10 hamsters/group infected, 5/group tox
- BCX4430 doses of 40 and 125 mg/kg/d tested
- Administered i.p., bid X 7 days beginning -4 h
- Parameters: survival, Δ weight (d 3 to 6), ALT (d 6)
BCX-4430 Significantly Improves Survival

The graph shows the percent survival over time for different treatment groups. BCX-4430 at 125 mg/kg, BCX-4430 at 40 mg/kg, Ribavirin at 50 mg/kg, and Saline Placebo are compared. The graph indicates that BCX-4430 at 125 mg/kg and BCX-4430 at 40 mg/kg significantly improve survival compared to Ribavirin and Saline Placebo, as indicated by the survival curves extending further to the right on the x-axis. The p-value for all comparisons is <0.001, as compared with placebo.
Treatment Significantly Improves Weight Change and Serum ALT

***P<0.001, as compared with placebo